skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davies, Kimberley"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ocean warming linked to anthropogenic climate change is impacting the ecology of marine species around the world. In 2010, the Gulf of Maine and Scotian Shelf regions of the Northwest Atlantic underwent an unprecedented regime shift. Forced by climate-driven changes in the Gulf Stream, warm slope waters entered the region and created a less favorable foraging environment for the endangered North Atlantic right whale population. By mid-decade, right whales had shifted their late spring/summer foraging grounds from the Gulf of Maine and the western Scotian Shelf to the Gulf of St. Lawrence. The population also began exhibiting unusually high mortality in 2017. Here, we report that climate-driven changes in ocean circulation have altered the foraging environment and habitat use of right whales, reducing the population’s calving rate and exposing it to greater mortality risks from ship strikes and fishing gear entanglement. The case of the North Atlantic right whale provides a cautionary tale for the management of protected species in a changing ocean. 
    more » « less
  2. Abstract. The 852/3 CE eruption of Mount Churchill, Alaska, was one of the largestfirst-millennium volcanic events, with a magnitude of 6.7 (VEI 6) and atephra volume of 39.4–61.9 km3 (95 % confidence). The spatial extent of the ash fallout from this event is considerable and the cryptotephra (White River Ash east; WRAe) extends as far as Finland and Poland. Proximal ecosystem and societal disturbances have been linked with this eruption; however, wider eruption impacts on climate and society are unknown. Greenland ice core records show that the eruption occurred in winter 852/3 ± 1 CE and that the eruption is associated with a relatively moderate sulfate aerosol loading but large abundances of volcanic ash and chlorine. Here we assess the potential broader impact of this eruption using palaeoenvironmental reconstructions, historical records and climate model simulations. We also use the fortuitous timing of the 852/3 CE Churchill eruption and its extensively widespread tephra deposition of the White River Ash (east) (WRAe) to examine the climatic expression of the warm Medieval Climate Anomaly period (MCA; ca. 950–1250 CE) from precisely linked peatlands in the North Atlantic region. The reconstructed climate forcing potential of the 852/3 CE Churchill eruptionis moderate compared with the eruption magnitude, but tree-ring-inferredtemperatures report a significant atmospheric cooling of 0.8 ∘Cin summer 853 CE. Modelled climate scenarios also show a cooling in 853 CE, although the average magnitude of cooling is smaller (0.3 ∘C). The simulated spatial patterns of cooling are generally similar to those generated using the tree-ring-inferred temperature reconstructions. Tree-ring-inferred cooling begins prior to the date of the eruption suggesting that natural internal climate variability may have increased the climate system's susceptibility to further cooling. The magnitude of the reconstructed cooling could also suggest that the climate forcing potential of this eruption may be underestimated, thereby highlighting the need for greater insight into, and consideration of, the role of halogens and volcanic ash when estimating eruption climate forcing potential. Precise comparisons of palaeoenvironmental records from peatlands acrossNorth America and Europe, facilitated by the presence of the WRAe isochron,reveal no consistent MCA signal. These findings contribute to the growingbody of evidence that characterises the MCA hydroclimate astime-transgressive and heterogeneous rather than a well-defined climaticperiod. The presence of the WRAe isochron also demonstrates that nolong-term (multidecadal) climatic or societal impacts from the 852/3 CEChurchill eruption were identified beyond areas proximal to the eruption.Historical evidence in Europe for subsistence crises demonstrate a degree of temporal correspondence on interannual timescales, but similar events were reported outside of the eruption period and were common in the 9thcentury. The 852/3 CE Churchill eruption exemplifies the difficulties ofidentifying and confirming volcanic impacts for a single eruption, even whenthe eruption has a small age uncertainty. 
    more » « less